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ABSTRACT

This report describes the application of two versions of a quasi-optimum control
technique, developed at the General Precision Aerospace Research Center, to two guid-

ance problems.

The first application is that of developing an explicit guidance technique for or-
bital injection, and comparing this technique to other guidance schemes, particularly the
Iterative Guidance Mode (IGM) developed at the NASA Marshall Space Flight Center.

It was found that General Precision’s quasi-optimum control technique results in orbital
injection at an earlier time than obtained by any of the other techniques to which it was
compared, and it gives excellent results even when the IGM technique fails. The particu-
lar merit of the General Precision technique, however, is significant only in flights which

are of longer duration than typical of near-term Saturn V flights.

The second application is that of developing a guidance technique for very low-
thrust vehicles. As a result of normal computational errors (truncation and round-off) the
results achieved are inconclusive, but a slight advantage is seen by use of the quasi-opti-

mum control technique.
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1. INTRODUCTION AND SUMMARY

The general problem of optimum guidance is the determination of a steering law by which a
vehicle, starting in an arbitrary state is brought to a desired terminal manifold in an optimum fashion.
The optimum is usually defined as requiring a minimum fuel expenditure, thereby maximizing the pay-

load which can be carried.

The determination of the optimum steering is a well-known problem in the calculus of varia-
tions and can be reduced to the solution of a two-point boundary-value problem of ordinary (nonlinear)
differential equations. Effective computational techniques for solving such two -point boundary value
problems are available but require the use of a large, high-speed digital computer and are not suitable

for real-time on-board implementation (explicit guidance).

The need for approximate techniques which are capable of being implemented on board the
vehicle but which nevertheless yield nearly optimum performance has been recognized for a number

of years and is currently receiving attention by several investigators.

Several versions of a quasi-optimum control technique [1 , 2] which has given evidence of
satisfying these requirements hawbeen developed at the Research Center of the General Precision
Systems Inc., Kearfott Group, and various applications of the technique [3 , 4] have been reported
in the technical literature. The objective of this investigation was to determine whether the technique

is useful in two applications of interest to the Marshall Space Flight Center.

The application studied more recently was the use of one version of the General Precision
quasi-optimum control technique to improve the performance of the MSFC - developed iterative guid-
ance mode (IGM) method of explicit guidance for orbital injection, and to compare the resulting per-
formance with other explicit guidance techniques. These included a flat earth model with a constant
gravitational field over the remaining time-to-go (simplified process for the quasi-optimum guidance
law) and a #nomicl gravity model currently under study at MSFC. The results of the investigation
demonstrated that the General Precision quasi-optimum control technique investigated is always better

than the other guidance techniques to which it was compared. The amount of improvement over the



IGM is not significant in relatively flat, short duration (200 sec.) trajectories which are typical of
normal Saturn flights, but becomes more evident in steep trajectories, in which the General Precision
technique (as well as others) are significantly better than the IGM technique and can achieve as much
as a 10 percent reduction in fuel consuption. The superiority of the General Precision technique to
the others is even more evident in trajectories of longer duration (which are not typical of current
Saturn missions, but may well represent missions of the next decade). In relatively flat trajectories

of 500 second duration, for example, the General Precision quasi-optimum technique provided as much

as an eight percent reduction in fuel consumption compared to the IGM.

The most remarkable performance of the General Precision quasi-optimum technique was
achieved on a trajectory of 1000 seconds optimum duration. The General Precision quasi-optimum
technique achieved the desired orbit in 1001.56 seconds which the IGM and polynomial gravity
steering laws failed to achieve the desired orbit and the simplified steering law inserted the vehicle

into the desired orbit in 1,231 seconds.

An earlier study was made of the application of a different version of the quasi-optimum control
technique on the problem of orbital transfer in a vehicle using extremely low thrust. A typical mission
was visualized as that of (1) ascending from a near circular orbit around the earth to (2) a heliocentric
orbit around the Sun, and finally (3) descent to a near circular orbit around a prescribed planet. The
objective of the guidance technique was to accomplish the mission with minimum fuel expenditure. In
this investigation we had considered only the first part of the problem, namely the development of
the steering law which optimizes the trajectory from an arbitrary starting state or the beginning of

each phase to an arbitrary state at the end of that phase.

Owing to difficulties which we believe are attributable to normal digital computer round-off
and truncation errors, the results obtained are inconclusive. A reprogramming of the algorithm to

avoid unnecessary computations and the attendant computational errors thereof should be undertaken

prior to the resumption of this study.



2. THEORY

The theoretical basis of the quasi-optimum control techniques studied in this investigation was
established at the General Precision Aerospace Research Center and studied under Contracts NAS
2-2648 [2] and NAS 2-3636 with the NASA Ames Research Center. Details of the theory and a
number of examples of application are contained in References [1~5]. For completeness, however,

a brief review of the theory is included here.

Consider the problem of minimization of xO(T) for the system

x@) = fx{t),u(®), x = {xo, e x ) @2-1)

n

where x(0) is known, the boundary conditions are of the form
¢, &) =0 t=1,2,...,m=<n 2-2)
T is free and u(t) must be a member of a given set Q .

It is well known that if an optimal u* exists then u* maximizes the Hamiltonian

Hix, u*, p) = max H(x, u, p) = max p’f(x, u) (2-3)
u €S vefl

where H(x, u* , p) = 0. Consequently, u* can be obtained as a function of the adjoint state

p = {po, cee s pn} and the process state x:

u* = olp,x) (2-4)

The adjoint vector pf(t) is governed by

pt)=- Hx ‘ (2-5)
with
1 1
p(T) = f——--- 2-6)
e\,
3



where Hx is the gradient of the Hamiltonian with respect to x, X isa vector of m constants and

® isdefined by

ap 1
Ox

® =

J

Let X(t), P(t) be solutions of the two-point boundary-value problem (2-1) - (2-6) and let

x(t) = X({t) + &) 2-7)

be the state in an altered problem (e.g., with different initial or terminal conditions or different

dynamics), and suppose that £ is a small quantity. As a result of the change £ in x, the adjoint

vector will change by an amount ¥, i.e.,

p(t) = P(t) + ¥ (t) (2-8)

Substitution of (2-7) and (2-8) into (2-1) and (2-5) results in

. . _ _ 2
x+g—4%—¢%+HX§+wa+O@)

o ) 2-9)
P+y =-H = -HX-HXXQ-HPX¢)+O(€ )

X

where HP and HX are the gradients of the Hamiltonian evaluated at p = P, x = X and

H = [__azH_“ H = azH = H’/
XP ] axj api | PX apj axL XP
x=X x=X
p=P p=P
oo |2 W | o
PP apj apt XX axj axt
x=X x=X
p=P p=P



Since X and P are solutions to (2-1) - (2-6) it follows that

X = H, P=-H,
and hence, after dropping terms of O(Ez) , (2-9) becomes
& = Hypl *Hpp¥
. 2-10)
b =yt Hpyd

These differential equations are linear, and can be integrated to give

£ = ¢”(r,r)£(r) T @ T, DY)

@2-11)
b = @, T, NEE) + @0 T, DD()

where q)‘!,j(T’ t)(L,7 =1,2) arethe (n+1) x (n+1) blocks of the 2n+2) x 2n+2) fundamental
(transition) matrix of (2-10) . Our objective is to find a relationship between the correction ¥ (t)
to the adjoint vector p(t) and the deviations £(t) of the state from X(t). To do this it is necessary

to eliminate £(T) and ¥(T) from (2-11) by use of the boundary conditions for the original (exact)
problem (2-1) - (2-6).

Consider a state variable Xy fixedat + = T. Then

X'L(T +dT) XL(T) +>'<L(T)dT

. : (2-12)
= X,() +£,T) + X, (N)dT + &, [T

The last term is a second-order infinitesimal and can be dropped. If in the simplified problem the
constraint is satisfied by X, attime T, then in the exact problem the constraint must be satisfied

at T +dT. Thus we must have i (T +dT) = c; = Xz./ (T) and hence (2-12) becomes:

£, = -X,dT for X, (1) fixed (2-13)



Finally, we must have
I T i1
M=% ¥ %
2-15)
P EHX Y =0

Equations (2-12) - (2-15) give n +2 relations. Since dT is an additional variable, there are just
enough equations needed to solve (2-11) for () as a function of £(t) . It is readily established

that upon elimination of ¥(T) and £(T), a linear relation between ¥(t) and £(t) is obtained:
P(t) = ME)E) (2-16)

Upon differentiation of (2-16) and substitution of the result into (2-10), there results

dM/dt + MHXP + HXPM + MHPPM + Hxx)g =0

If this realtionship is to hold for any £, the matrix M must satisfy the matrix Riccati equation:

-dM/dt = MHXP + HPXM + MHPPM + HXX 2-17)

It is evident that if M is a solution to (2-17) then M’ s a solution to (2-17); thus the solution to
(2-17) can be a symmetric matrix. In fact, when the adjoint vector p can be interpreted as the

negative of the gradient of the optimum value of xO(T) =V 2], then

32y

M= - axz axj @-18)
x=X
Because £(t) isa change in x(t) and ¥(t) is the corresponding change in p(t), it follows that

apt

x=X

even when p cannot be interpreted as the negative gradient of V.



Constraints on the magnitude of the control variables, l”i, | = U, for example, will gen-
erally lead to a control law which is a discontinuous function of the adjoint variables, ahd hence,
in a strict sense not all the partial derivatives required in (2-10) or (2-17) will exist. The discon-
tinuous control variables can be treated by introduction of impulses (delta functions) which arise

upon differentiation.

In many problems it is possible to approximate the dynamic behavior of the process by a
system of differential equations of considerably simpler form than those actually governing the pro-
cess. Under favorable circumstances an analytic solution to the simplified problem can be found,
but the use of the control law derived for the simplified process may not be entirely adequate for
the exact dynamic model. If the neglected terms in the original dynamic model were accounted for
approximately, however, it might be possible to improve performance to an acceptable level. The

suboptimum control equations of the previous section provides a method of so doing.

The contro! u is generated as a function of the state x and the adjoint state p. Instead
of using the exact {unknown) relation p = p(x) between the adjoint state and the process state the

adjoint state is approximated by
p=P+ME§ (2-20)

where P = P(X) is obtained as the analytic solution of the simplified problem and

M = M(X)

is the matrix M of the previous section, expressed as a function of the state X instead of time.
(To eliminate time from M, it is necessary to express time in terms of the state variables along the

optimum trajectory of the simplified system.)

The control system, using the optimum transformation from p to u, but the approximate

relation (2-20) for the transformation from x to p has the configuration of Figure 2.1 . |

In many cases it will not be possible to obtain an explicit analytical expression for M(X).
Numerical integration of the Riccati equation, using a function of the state rather than time as the
independent variable, and analytical approximation of the result may prove feasible. An alternative
procedure is to use an asymptotic solution of (2-17), obtcined by setting dM/dt to zero and solving

the resulting algebraic system. This was the approach used in the present study.
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A second method of employing the suboptimum control technique is based on the interpretation
of (2-19) as the Jacobian matrix of p with respect to x. Asa consequence of this interpretation it
follows that
ap_L
Ix ,

%J

x = Mx 2-21)

o -
|

provided that the partial derivatives in the matrix M are evaluated at the true state x of the pro-

cess. Thus the adjoint vector can be obtained by integration of (2-21);

t
P =Py + [ Mx dt (2-22)
o
This relation leads to a control system with the configuration shown in Figure 2.2(a). It is noted
that the derivatives of the state variables instead of the state variables themselves are the quantities

fed back. Hence this technique is particularly applicable to problems in inertial guidance, where

the principal sensors are accelerometers.

In the event that x cannot be sensed, an alternative configuration can be obtained by par-
tial integration of (2-22) :

f.
Xo " j‘ M x dt (2-23)

fo

P =P + Mx - MO
The right-hand side of (2-17) is used for —M in 2-23). The control system configuration correspond-

ing to (2-23) is shown in Figure 2.2(b); it is seen that only the state x is required in the controller.

In either implementation the matrix M would be generated by real-time integration of (2-17)
with the nominal initial condition MO , and the nominal initial adjoint state PO would be used.
Thus to achieve near-optimum performance, the actual initial state X0 should be reasonably close to
the nominal initial state XO for which Mo and PO were computed. If the closed-loop system is
asymptofically stable, however, the effects of using initially incorrect values of MO and Po will

be only transient.

The first method described was used in the application to IGM improvement and the second

method was used in the low-thrust quidance application.
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PROCESS
M =D f o B>

u x = f(x,u)
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(a) x MEASURABLE

¥ PROCESS
= M o == >

u x= f(x,u)

p(0)-M(o)x (o)

(b) x NOT MEASURABLE

SUBOPTIMUM CONTROL BASED ON p(0) , M(0)
FIGURE 2.2
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3. APPLICATION TO IGM IMPROVEMENT

3.1 Exact Probiem Formulation

This application is concerned with the improvement of the MSFC lterative Guidance Mode
[Ref. 6,7 1 IGM) computation by use of Friedland's quasi-optimum control technique in which the
optimum control law for a simplified model of the process is linearly corrected to account for the
difference between the simplified model and the actual process. In this application the simplified
model is obtained by assuming that the gravitational acceleration is constant in magnitude and dir-

ection over the remaining tfime-to-go.

The guidance problem to which the quasi-optimum technique is to be applied consists of
placing a payload in a fixed orbit with minimum fuel expenditure using a booster which has a con-

stant thrust magnitude. The assumptions made in the formulation of the exact problem are:

(@) The gravitational acceleration is due to a spherical earth; oblateness is not con-

sidered.
(b) Vehicle motion occurs in a vacuum; no atmospheric drag is included.
(c) Vehicle thrust and mass-flow rate are constants.

(d) Motion of the vehicle is confined to a single plane.

The resultant system is governed by the following differential equations in an earth centered

cartesian coordinate system.

;(O
. F
Xy, = —u, =g *x
1 Xq 1 5
x2=x]
F \

R



. {2 T X%y +3xx34}

;‘5‘ x{z 2}5/

2
+
. 2x Xy % 3x 1%9%4 o)
6 " ¥ { 2 }5/2
+ X
2
where
x~ = vehicle mass
gx* , gy* are the x and y components of gravitation acceleration which

are constant in magnitude and direction during thz remaining

time-to-go.
Uy U, are the direction cosines of thrust acceleration
F = vehicle thrust
K = gravitation constant

s X are terms used to account for the difference between the approx-

imate (constant) gravitational field and the true field.

The physical situation is illustrated in Figure 3-1.

The problem then is to determine the control vector u = {u] , u2} subject to the constraint
2
+ = -
Uy tuy =1 (3-2)

1 .
that takes the process from some current state x(t) to afinal state x(T) such that the perfor-

mance index xO(T) is @ minimum and the remaining states satisfy the boundary conditions

1 The current time is denoted by the variable t, terminal time by T; time when it is used as an
independent variable is denoted by T, i.e., t < 7 <T.

12



VEHICLE MOTION IN UNIFORM GRAVITATIONAL FIELD
FIGURE 3-1
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2 2
x-l (T)+X3(T) \'

x3 (M, (T) +x3(T)x4(f) =R-V

2 2 2
X2(T)+X4(T) o R
x 12 RV
(x50 - g7 12+ I = 0¥ = g
where

V = orbital velocity

R = orbit radius

9 = magnitude of gravitational acceleration at orbital altitude
R-V = position-veloctiy dot product {R-V = 0 for circular orbits}

The terminal time T is free.

The Hamiltonian for this problem is

o L (_F - > . .
h = Po’“+P1<xo“1 9x+"5>+p2"1+p3 xg 2 9, *xg ) T Pgx3t PsXs T PgXg

(3-3)

(3-4)

Maximization of the Hamiltonian with respect to Yy and Uy subject to (3-2) results in the

following steering law
p

1
1 /2 2 \1/2
6’1“’3)/

P3

U =

2 2 2\1/2
<P] +p3>/

Using these values of u, and U, yields

1

(3-5)

L F(2 2)1/2 . . : :
h = -pgm * X <'°1 tP3 tpylag T xg) Tpyxy Fpaltgl F xg) Fpxg  PsXs * PXs

14
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3.2 Simplified Problem

In this application of the quasi-optimum technique the simplified problem is obtained
by assuming Xg and x, are zero. It is observed that the exact and simplified problem
differ only by the presence of Xg and X in the former. These terms must be included in the exact
problem to account for the difference between the approximate (constant) gravitational field and
the true field. Since the assumption of uniform gravitation is known to be reasonably accurate we
conclude that Xg and X, are small quantities and it is reasonable to use the solution of the sim-
plified problem as the basis for an approximate solution to the exact problem. Thus we select as the

state of the simplified process

X={x0,x],x2,x3,x4,0,0} (3-7)
Then

g:{EO,O,O,O,O,xS,xé}

(Note that &0 is the change in the performance index due to the simplification.)
The simplified process is governed by the following differential equations

X. = -m

0

- F
Xy = g—u, -g*

1 X0 1 X
Xy = X, (3-8)
F

Xq = <vu, -g*

3 Xo 2 y

X4 = %3

It is desired to minimize XO(T) subject to
xZm +x2M - V2 = 0

2 2 2 _
X2(T)+X4(T)-R =0

(3-9)
X](T)XQ(T) + X3(T)X4(T) -V-R=0
P, MX5 (@) + Py MX M) = PaMX, (T) - P,MX, (M) =0
where {uy , v, € 1@ Ju? +0u2 = 1]
15



The Hamiltonian for the simplified problem is

LA L 3-10
H = P0"‘+'°1[x()”1 ng“Lszl*Ps[xO”z gy] P4% (3-10)

Maximization of the Hamiltonian with respect to u. and Uy gives

]

P P3
Max H = u, = Uy = (3-11)
1 (P]2 +P§_)1/§ , (P12 +P§)]/2

Substituting u, and Yy into the Hamiltonian gives

* -
"2 s 2%y 7 Paey FPyXg (8-12)
0

1/2
Ho=Pm+— [P2+P2] - Pigr FPX, - P

The corresponding adjoint equations are

P - £ P2+P2 V2
0 x2 3
0
P] =—P2
P3 = P
P5=0

Let t denote the present time and let + = T < T. Then the solution of (3-13) is given by
PL(T) = P (1) = (T - 1P, (1)
P.(t) = P,(t) constant
2 2 (3-14)
P4(T) = Pa(t) = (= 1)P (1)

P4(‘T) = P4(’r) = constant

16




The optimum control law for the simplified process (3-8) becomes

P (1) = (T = P, ()

u,(T) = cos B =
! [Py (1) - (r - P02+ [py(n) - (7= 1P, (1) 231/

Py(1) = (7~ r)P4(r) (3-15)

T) = sin 6 = 5
{[P](r) = (T= 1P, (N]7 + [Py(t) - (T-1)P

u, (
2 22

Substituting (3-15) into (3-8) and integrating to the terminal time T, results in expressions
for X](T) , X2(T) , X3(T) , X4(T) , as functions of T -t (time-to-go) and the initial conditions.

The integrals are

T P] t) - (1 - 'r)Pz(t)
X](T)—X]('r)=Ff . 5 173 dr
tXp(t) - (1= Om)IP, () - (7= )Py + [Py(t) - (T- 1)P, (7
T
-9 { dr
.
X, (M) = X, (1) = {x](f)df (3-16)
T P.(t) - (T~ )P, (1)
X3(T) - X3(f) = F[ 3 4 dT

F (X0 - (- adlIP, 0) - (- R, 017 4Byt - (- 0,022

17



The solutions of the integrals are

XM = X0 -9 T Vex[[P] (1) = Py (Tl P2(t)12}

Xo M) = Xo®) + X 05 5 - QQTG%)/Q +V [P ®) = P07l - (T =T o)y

b+ 2cT
GO 1 /——“—5
+V Py [(———z—c-————> Lo+ </a - Ja+bTyteTy ):]
(3-17)

X3(T) = X3('r) - g;TGO +Vex {[P3(f) - P4(f)TO]I] + P4(f)I2}

X4 = X, 1) + X507 5 5 - g*TGé/Q +V_ [Pat) - P, ()T ]I, - (T - Teodl

Y 1
b +2cT
GO : ] —_ 2
+vexP4(t)[<———2c————> 12+—c (/c - /o +bro+c-ro>J
where
Vex =F/m
To = Xo(f)/m
Too=T-t _
I, = ! |og L L * V1 +0£2
" +bT +c1'§] 172 |l B+ V1 +[3‘,2
I, = ! log YA FY ]+‘)’2
2 c];z el A +J/1 142 |
) 20+b(T0+TGO)+2cT0TGO
o 2.1/2
(TO-TGO)(40c—b)
5 2a +bT0
ro<4oc-b2)'72
18



) b+2cTGO
(4cc—b2)]/2
b
A_
(4ac_b2)1/2
L2 2
a = P] (f)+P3(f)
b —_

= - 2(P, ()P, (1) + P3('r)P4(f))

c = P22(f) + Pf(t)

The integrals of the equations of motion (3-17) must be substituted into the boundary con-
ditions (3-9) and solutions for P] ), P2(f), P3('r), P4(’r), and TGO obtained. However, there are
five unknown parameters and four boundary conditions. The fifth relation is obtained by using the

Hamiltonian with P. =1, i.e.

]

L F L n20/2 e s
oK Pl e R = Pyey + Py

P] =1and P, = P. (L =2,3,4) are substituted into (3-17). The boundary conditions

(3-9) are solved using a modified secant iterative algorithm supplied by MSFC (see Appendix II).

(3-18)

The adjoint variables are obtained by solving (3-18) for K together with P] = 1/K and
P, = P, /K (L=2,3,4).

g: and g; are obtained in the algorithm by use of the following relations

9. = ”2% 2 0 73/ T T2 X4(f; 32
X2+ x, 0] X2 + X2 0))
- (3-19)
9, = 7= X2(T)2 32 2XZ(t) TR
x2) +x2m) X26) + X2 0]

Thus the constant (over the remaining time - to - go) gravitational terms are taken as the

average of the current and final gravity components.

19



3.3 Quasi Optimum Control Law

In the quasi-optimum control law the x and y components of vehicle acceleration are

given by

F P] and —E— P3
2 2.1/2
*0 (p] +P3) /2

2 2.1/2
0 (2 +p2)"

in which approximate values of P and py are used. These approximations are given by

Py = Py +L§o mysg & t=1,3 (3-20)
From (3-7) however, El thru 54 are zero and €5 = X and Eé = Xy hence (3-20) becomes
Pr = Py mysXs Mm%y 8-21)
Py = Py masXs T myge (3-22)

Thus only Mysr Mygr Mo and maa in the matrix M are needed. These are calculated with

the aid of (2-15). The coefficient matricies H

U , HPP appearing therein are found
by performing the required partial differentiations on the Hamiltonian for the complete problem
given by (3-6), and evaluating the result at x = X, i.e., for Xg and X4 = 0. The results are

H 0 0 0 0 0 0
XXOO

0 0 H 0 H 0 0

X)(]2 XX]4
0 H H H H 0 0

Kyg o Ky XXy XXy,
y _ 0 0 HXXM 0 HXX34 0 0

XX

0 0 H H H 0 0

XX24 XX34 XX44
0 0 0 0 0 0 0

| 0 0 0 0 0 0 0 |
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where

H

XX

H

H

00

XX]2

XX14

XX22

XXo4

XX34

XX44

2F_ 2, p2)1/2
3 1t
0
plap, X3 +ox P x2 - 12p x2x - 6P X 3,
4 T I%Ps 4 6%2 %4
[X +X ]7/2
uiap x3 - 12P, X, X x2 - 12p_x2x +3PX]
554 2%4 5% %4 2
7 372
X2 +x2)
“ 3(3PX, _ap X XA - 4500 x + P X )X,X x 3
[x 2 ]9/2 6%31%4 5%3 4
+ 9(-8P_X, + 9P, XIXZX2 + 60(P.X +P X)X 3% +12@P.X, - PX )X
551 T IPX)%y Xy 553 2 %4 551 = PeX3)%,
u i 4 i 3
5 o7 112X, + PeX X +15P X, - 3P X )X, X,
[X +X]
2.2
+81(PX, + P XIXIXZ +15(- 3P6X3+4PX)X2 - 120X, +P x3)x 1
3 2 2 3
wi- 6P6X4 12P5X2X4 +9P6X2X4+3P X1
[x T ]7/2
o ) 4 3
g [126:PX, + 2P X)X + 60(PSX, + PoX, )X, X,
[X2 +X ]
+9(9P_X. - 8P, X)XZX2 - 45(P.X., + P,X.IX°X, + 3(-4P_X +3PX)X ]
5Ky = BPeX)X Xy 5%3  PeX XX,y 551 3
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where

22

PXO]

PX03

PX]5

leb

PX2 5

P26

0 H 0 H 0 0
PXo, PXo3
0 0 1 0 0 H
PX, 5
0 0 0 0 0 H
PX, s
=10 0 0 0 1 H
PX, 4
0 0 0 0 0 H
PX, 4
0 1 0 0 0 0
K 0 0 1 0 0
- FP,
2,2  .2.1/2
xO(P] + P3)
- FP,
2,2 2.1/2
X0 (P] + P3)
2 2
2 .2.5/2
(X?_ +X4)
u(3X2X4)
2. .2.5/2
Xy +X3)
3 2 2 3
BIBX X, + 9K X, Xy = 12X) XX, = 6X, X, ]
2. 2.7/2
X, + X,
3 2 2 3
BIBX Xy = 12X, X X0 = 12X X X,y + 3K X
2 . 2,7/2
Xy +X,]




2 2
BEXy +2X,)
H ﬁ_
PX36 [Xz + >(2]5 2
3 2 2 3
y _ u,[-6X3X4 - l2X]X2X +‘3’X2 X3X4 +3X]X2 ]
PX46 [X +X ]7/2
0 0 0 0 0
Fp2 - FP,P
0 3 0 13 0
2 2,3/2 2 2,3/2
XO(P] + P3) xO(P] + P3)
0 0 0 0 0
"pp = ~FP_P Fp2
0 13 0 ! 0
x (P2 + p2) V2 X, (P2 +p2)¥2
oY1 3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
The result of substituting these matrices into (2-15) in component form are
- thog = Mgy Hpy  *+2mogHpy  FmoPHpe o+ 2mmosHo + mo Hp,
01 03 11 13 33
-mn, = mn, +m. H +m. H +m,. H +m,H m, . H
01 02 05 PX]5 06 leé 11 PXO] 13 PX03 11 PP”
+m, ,m., +tm. m_  )H +m,.m..H
1103 13 01 PP]3 13703 PP33
-m. = +m,,H +m,,H m,~m..H
02 05 PX25 06 PX 12 PXO] 23 PX03 1201 PP”
*tmgmog * "‘23’“01)HPP]3 "23"03" e,

+H

XX

00

(3-23-1)

(3-23-2)

(3-23-3)
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-Man = ma, +m. H +m. H 4+m..H +m.H +m,.m..H
03 ~ Mo4 " M057PX, T M08 PXy, T M137PX, T T33P, T13TOTTPP,
(3-23-4)
+my3mo3 T magme1Hpp T moamastipp
13 33
-m., = m..H +m. H +m. H +m. H +m. m. H
04 = 05" PX,, T 06 PX, 14 P 34T PX s T T 14T01PP
(3-23-5)
() gmo3 T magmopHpp  Tmamastipp
13 33
-é =m., *+m,_H +m,H +m..m. . H
05 ~ Mo3 " ™5 Xy, M35 PXyy 15701 PP
(3-23-6)
*my5moz T masMopHpp  *masmosHpp
13 33
-m = ma, tm,, H +m,, H +m.,, ma,H
06~ ™03 7 ™16 PX), " T367PX 16701 PP
(3-23-7)
*my4moz T MagMorHpp. T Magmoatipp
13 33
_rﬁ”:2m12+2m]5HPX +2m]6HPX +m”2HPP +2m]]m]3HPP +m]§HPP (3-23-8)
15 16 1 13 33
-m = m,H +m, H +m., +tma-H +m, , H +m,.,m,.H
12 157PX, 16 Xy, T 22 T 257 PX 267 PX, T T 12 PR
(3-23-9)
+m,,m,, +m, .m, )H +m. m,H +H
12713 7 "1T23 e o T M13T237 PP T XX,
-m =m,,+tm..+m, H +m. H +m,H m,. H +m..m..H
13 147723 T M57pX T167PX,, T T35 PX, 36 PX T T1TI3TPR
2 (3-23-10)
+m,, +m,.m, )H +m,. m,,H
L D E Tl PR E i <
-r';1 =m., +tm, _H +m. H +m,_H +m,, H +m..m, ,H
14 247 T15TPX, T 167PX,, 45 PX 46 PX o T T4 PR
(3-23-11)
Fmgmyg tmyma e T mpgma Hpp  FHY

13 33 14
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15 = My Tmgg tmggHpy  AmgHoy  Fmymistipp
15 16 1
(3-23-12)
*mygmys T mymagtpp  FmygmacHpp
13 33
TMg T Mg Moy +m56HPX]5 +m66HPX]6 +mllm16HPP”
(3-23-13)
Fmyamyg Ty MgHpp  tmyama Hepp
13 33
gy = MagHpy  F2mpHp i Hpy o 2mmHo, #mygHpp  +Hy (3-23-14)
5 PXos 26 1 13 33 X
-m =m., +m,.H +m, H +m._H +m.. H +m,.m..H
23 = ™24 F Masex T MaeTex, T Mast X, T3l e, T M2 3 e,
(3-23-15)
+ (m,m,, +m,,m,,)H +m,,m,,H +H
13m23 T M12"a3 ee, T ™2a"33" e, T Pk,
-m = m,.H +m, H +m, H +m,, H +m,..m., H
24~ Ma5"px, T ™26, T M5 X, M as e, T M2 e
‘ (3-23-16)
+m, my, tm, m,,)H +m, m,,H +H
14723 " "adM2 et a2 e PPk,
-ma,. =m.. +m._H +m_,H +m,,m,_H + (M, -Msyy +m, m,)H
25 = M2 T M55 ek, T ™56, T ™25 ee T Mis™23 T MiaMas e
(3-23-17)
+m..m._H
23"35"pP_
-m., = m.. +m, H +m, H +m,,m, H +{m, m,, +m,,m,,)H
26 = ™23 " Msgex, T Me6Mpx,, T M2 16 pp, T M6M23 T ™MaMae e,
(3-23-18)
+m,.m., H
23"36"PP_
- Mgy = 2mg, +2macH o+ 2mg Hpo +m]§HPP *2myamasHpp +m3§HPP (3-23-19)
16 36 n 13 33
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-m =m,, +m,H +m., H +m,.H +m, H +m,.m. ,H
34~ Mas T MasTex, T M6 X, T MasTex s e T M3 14 PR
+(m, m,, +m,m, )H +m,.,m, H +H
14733 " ™3"aa ep, a3l e, T,
-m = m +m,_ +m__H +m_,H +m..m.,_H
35~ ™13 M5 T Mes px, T MseT g, T35 PR
+ (m,m,, tm,.m.)H +m,.m,,H
1sMa3 T M35, * a5l ee
-m =m +m,, +m_,H +m, H +m,, m,.H
36~ ™33 M6 T Ms6"px, T Mes ex,, TM6MIa PR
*(mqmag t magmygltpp  Fmggmastpp
13 33
gy = 2mygHpy  F2m, Hpy +mIZHPP *2my magHpp +m33HPP *+H
%26 46 1 13 33
-m = m +m._H +m.,H +m. m,_H
45~ ™4 " M5, T Msetlex,, T M4™Ms! e
tmygmgy tmyy My magdHpp  Fmamas Hep
13 33
My = Mgy tmg ot Ho bmymy He
26 46 1
T mygmay v mymadHpp  tmgmaHpy
13 33
'“"55=2'“15+’“152HPP *2my gmasHpp +m352HPP
1 13 33
- = +
Ms6 = M35 m16+m15m16HPP”+(m15m36+m16m35)HPP]3+m35m36HPP33
" mge = 2ma, +leHPP *2m, MagHpp +’"3§HPP
" 13 33
26

XX

44

(3-23-20)

(3-23-21)

(3-23-22)

(3-23-23)

(3-23-24)

(3-23-25)

(3-23-26)

(3-23-27)

(3-23-28)



Note that equations (3-23-26, 27, 28) with r;155 , m 6 and m equal to zero involve only the

5 66
four required correction coefficients M5 s Mg s Mas and Mag
0=2m,_+m 2H +2m, m,H +m 2H (3-24a)
15 15 PP 15735 PP 35 PP
11 13 33
R U P U P Ei +"‘1<¢.~"‘35)HPP13 " ™35™as e, (3-24b)
0=2m,, +m 2H +2m. m,, H +m 2H (3-24c¢)
36 16 PP 16 36 PP 36 PP
11 13 33
2
Since H H =H equations (3-24) become
PP” PP33 PP]‘3
_ /2 1/2.2
0= 2m]5 + (m]SHPP m35HPP ) (3-25q)
1 13
1/2 1/2 1/2 1/2
0O=m,.+m,,(m,_H -m,H Ym, H -m,,H ) (3-25b)
35 1615 PP” 35 PP33 16 PP” 36 PP33
] /2 1/2,2 _
0= 2m36 + (m'léHPP” m36HPP33 ) (3-25¢)

A fourth equation is obtained by solving 3-23-6) and (3-23-7) with n:\05 and n'106 equal

to zero for Moy and myg as @ function of M5 Mygr Mas and Mog - These relations are

mop = {1 +m16HPP]3 +m36HPP33}{m15HPX0] J”“35H|>x03}/D
(3-26)
+{m, .H +m,H Hm, H +m, H }1/D
R N
Moz = {mlePP” +m36HPP]3}{m15HPX0] J”“ssHPxo:,,}/D
} (3-27)
-{1+m,H +m, H Hm, H +m, H /D
157pp, M35t ee, Tt Migex T Masex
where .
D =1tmHpp + g tmadHpp +mg Hyp (3-28)
" 13 33 |
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Substituting (3-26), (3-27), and (3-28) into (3-23-1) with rﬁoo equal zero and simplifying

results in
2
0 = F [-2Xgmg Py +m P)+—-————x° (P -m P)2+ (P2 + P2
03105 12 01" " Mos’d * 727 01’3 T Mos' AL
0Py *P3 IR (3-29)

Note that the presence of HXX in (3-23-1) eliminates the trivial solution

™5™ ™6 M35 M3~ -
Simplifying (3-25a,b,c) results in
0=2m. + F P —m. P.)? (3-30)
157 62452 377 ™15P3 ~m3sP)
0Py +P3) :
0= m, +my, + ——t p o.)(m P.) (3-31)
35 Mé 7, 23/2 my5P3 7 MasPy)my [Py = mg P,
X_ (P
olPy T P3)
0 =2m,, + F m,,P,-m P)2 (3-38
36 2 2.3/ 163~ M3 1
X (P} +P3)

Equations (3-29) thru (3-32) are solved simultaneously using the modified secant algorithm to obtain

the required correction coefficients.

3.4 Comparison of Guidance Law Performance

This section quantitatively describes the performance of four explicit guidance techniques
used to inject a payload into a fixed orbit with minimum fuel expenditure. The booster is assumed
to have a constant thrust magnitude. Some of the difficulties and limitations inherent in each gui-

dance technique are examined. The four guidance laws examined are:

(1) lterative Guidance Mode (IGM)

(2) Quasi-Optimum

(3) Simplified

(4) Polynomial Gravity Expansion (PGE)
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The IGM (6,7,8), developed by MSFC, is an explicit guidance law which approximates the
central gravitational field by a uniform field over a flat earth. Applyingthe equationsderived from the
simplified model to a spherical earth and an initial estimate of the time-to-go, the terminal range
angle is computed as a function of the current position and the additional displacement that would be
obtained during the remaining time~to-go. Since the predicted range angle may be in error, a weight-
ing factor may be used in this computation to account for gravity loss on steep and/or long duration
trajectories. The computation used to update the time-to-go is derived by simultaneously solving the
volocity to be gained equation at a given instant of time together with the characteristic velocity

equation.

The steering angle is computed in two parts. The first part is assumed to be the major portion
of the steering angle and is a constant angle obtained by utilizing the optimum steering constraints
required to obtain a given velocity without position constraints over a flat earth. The second smaller
part is comprised of a linear time function which is added to the first part and substituted into the
equations of motion. A small angle approximation is made and the equations of motion are integrated
and relations obtained, subject to the optimality constraints for the flat earth model, to obtain the
complete steering angle. The computer flow diagram for the IGM algorithm used in this investigation

is provided in Appendix |.

The simplified guidance law derived in Section 3.2 utilizes a modified secant algorithm for

n equations in n unknowns to solve (3-17) for P], P2, P3, P, and time-to-go. The vehicle is

4
steered according to

P
tan x = > (3-3D

1
A description of the modified secant algorithm is provided in Appendix Il .

The quasi optimum guidance law derived in Section 3.3 is exactly the same as the simplified
law with the additional step of employing the secant algorithm a second time to solve equations (3-29)

through (3-33) for Mysr Mygr Mag, and Mg and steers the vehicle according to

Pyt magxs T ma xg

P +m. x. +m

tan ¥ =
1 ™15% 7 ™eXe
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The PGE explicit guidance law which is currently under investigation at MSFC is similar to
the simplified guidance law with the exception of the gravitational model used in the equations of
motion. The simplified law utilized (3-14) to derive the constant (over the remaining time-to-go)
gravity terms which are an average of the current and predicted final gravity terms. The PGE uses

a third order polynomial to approximate the gravity components, i.e.,

4 i 1
1 J7

1
=u. o C,, !

2 (3-34)
1,2, 3, 4

I

The algorithm used to calculate the Ctj 's was furnished by MSFC and is presented in Appendix Ill.

Three sets of optimum trajectories were generated by integrating the exact equations of motion
with aptimum steering backwards in time from a 100 nautical mile circular orbit about the earth. The
burnout state and adjoint vectors for each run were obtained from the circular orbit boundary condi-
tions (3-3) and the variational Hamiltonian (3-6). The four guidance laws were then used to steer
the vehicle for each set of initial conditions obtained from the optimum trajectories. In each case
the guidance law computation was performed every second of flight time. The computation of the
adjoint variables was stopped when TGO < 10 seconds and during the remainder of the flight the

vehicle was steered with the last set of adjoint variables although the calculation of T was con-

GO
tinued until TGO < 1 second. The engine was shut down when TGO = 0.
The vehicle thrust was taken as 889,646 Newtons (200,000 pounds) and mass flow rate as

204.3146 kgm/second (14 slugs/second) for all runs. The parameters common to each set of trajec-

tories are listed in Table 3-1
Table 3-1

Parameters for Three Sets of Optimum Trajectories

Parameter ¥ Set 1 Set 2 Set 3
Burn Time (Seconds) l\ 200 500 1000
Ignition Mass (Kilograms) | 151614.12 @ 218908.5 934009.6
? 1
Burnout Mass (Kilograms) | 116751.2 bo116751.2 729695.0
| v

A
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On relatively flat 200 second trajectories which are typical of Saturn third stage flights all
four guidance laws performed extremely well. The engine burn times were between 200,05 and 200. 1
seconds for each run., Figures 3-2 through 3-4 illustrate the position, velocity, and pitch angle for a
steep optimum 200 second trajectory. On this trajectory the IGM required a large weighting factor to
obtain a reasonable initial pitch angle and did not perform as well as the other guidance laws. Table
3-2 lists the engine burn times required to insert the booster into a 100 nautical mile orbit from the

ignition point illustrated in Figure 3-2.
Table 3-2

Burn Times Required to Achieve Orbit for a 200 Second Optimum Trajectory

Guidance Law Burn Time (Seconds)
Quasi-Optimum 200.74
Simplified 200.77
PGE 200. 81
IGM 237.89

A 500 and 1000 second optimum trajectory were generated which are not typical of current
Saturn requirements but may well represent future mission requirements. The position, velocity, and
pitch angles for these trajectories are illustrated in Figures 3-5 through 3-10. The IGM required a
weighting factor to account for the long duration of the 500 second trajectory but could not determine
a reasonable pitch angle for the 1000 second trajectory and failed to achieve the desired orbit. The
PGE guidance law performed very well on the 500 second trajectory but the algorithm to determine
the steering angle did not converge on the 1000 second trajectory and the vehicle failed to achieve
orbit. The quasi-optimum and simplified guidance laws achieved the required orbits on both trajec-
tories with excellent burn times on the 500 second run, but the simplified law gave poor results on the
1000 second run. The quasi-optimum control law, however, achieves, the desired orbit in 1001.56

seconds!

Table 3-3 lists the engine burn times required to achieve the orbital conditions for the 500

and 1000 second trajectories.
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Table 3-3

Burn Times Required to Achieve Orbit for 500 and 1000

Second

Optimum Trajectories

Guidance Law

Burn Time (Seconds)

500 1000
IGM 539.29 Orbit not obtained
Quasi Optimum 500.53 1001. 56
Simplified 500. 60 1231.28
PGE 501.14 Orbit not obtained

Figure 3-10 illustrates the pitch angle vs. time for the 1000 second optimum trajectory. The

pitch angle commands generated by the simplified and quasi-optimum guidance laws are also given.
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4. APPLICATION TO LOW-THRUST GUIDANCE

4.1 Equation of Motion

The primary purpose of the investigation was to develop and evaluate a feedback guidance
law using the quasi-optimum control technique. Therefore for simplicity, but without loss in
generality, a planar trajectory was considered. The state variables chosen to represent the motion
of the vehicle are a hybrid set of orbital elements in which the zero-eccentricity singularity has
been removed. The independent variable is 7, where T is related to real-time t by dr =ndt,

n being the "mean motion".

At first glance it would appear that the system can be adequately represented by a 5-compo-
nent state vector; 4 for the orbital (planar) motion and 1 for the mass of the vehicle. However, the
dynamic equations contain the independent variable explicitly and, therefore, are not compatible ‘
with the quasi-optimum control theory which requires that the system be autonomous. The system
can easily be made autonomous by including the independent variable as a separate component of
the state vector. The following six component state vector is used to completely specify the state

of the system

x]=c/c|0

x2=esinw
)(3=eCOSUJ
x4=t

x5 = m/mg

X =T

where

|



a = semi major axis

e= (xg + xg)t = eccentricity

w= fan _](xz/x3) = argument of perigee

t = time

m = instantaneous mass

T = non-dimensional time = S n dt
n= (p/c3)% = mean motion

p = gravitational constant of the attracting body
Subscript O = reference values
Other terms which will be used subsequently are defined as

T = thrust/m

= reference thrust acceleration (T/x5 =

0

instantaneous thrust acceleration)
o = thrust angle measured with respect to local horizontal

¢ = exhaust velocity of propellant = lspg
k=1/

The equation of motion in terms of the above six-component state vector is given by

dx
P F(x) u

dx4

- *%

dx5

dr

dx6

dr

/2

1

-kT(x 100)3/2/p, ®
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where _
x . ] -
1 uy Tcos o
X = | x ; U= =
x2 -u2 Tsin«
|3
29 2x]6/‘y 2x](x3 sinT ~ X, €05 /y
%1
F= b y(x2+(l+6)sm %) -y cos T
'y(x3+(1 +6) cos TVb vsinT
- .
L= 1_’ T= (u2+u2)% _ Thrust
c 1 2 m
0
0= 1+x,cosT +x,sinT and ‘yE(l-xz-xz)%
3 2 2 3

Equation (4-1) are the dynamic equations for the nominal system. The actual system will
contain additional unaccounted for perturbing forces which will cause the vehicle to depart from
any predetermined nominal trajectory. A derivation of the control law for generating the nominal
trajectory as well as the feedback guidance scheme based on the quasi-optimum control technique

are given below.

4.2 Optimum Control Law

The Hamiltonian for the system (4-1) is given by

3/2, %, , 3/2
H = p4(x]ao) /u® +p'Fu - (p5kT(x]aO) //p%) Py (4-2)
where .
P
P= |p,
P3
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It is easily verified that this Hamiltonian is maximized by the following control

T %:F—% for |F'pl= kp5(x]00)3/2/l-1%

o= (4-3)
1
0 for |F'pl< kPS(X 100)3/2/415

Substituting this optimum control into (4-2) results in the following Hamiltonian

g (py (x40 //ui +T/Fpl - kpTla //“%) +p, when F" ol = klo5()(100)3/2/“5
(4-4)
\ (P4(X]OO //u%) + p6 when \F’p\< kp5(y]ao)3/2/“-g

The equations of motion together with the equations for the adjoint variables for the two

cases (engine-on and engine~off) are obtained by direct application of 2-1) - (2-5).

Case 1 Engine-off i.e., IF'pl| < kp5(x]°0)3/2/41%

x]=x2=>'<3=x5=0

- /2, %

x4—(x]ao /i

>'<6=1 (4-5)

.3 3, &
Py = §p4(x]°0/u)

Py=Py=Py=Ps=Pg=0




Case 2 Engine-on i.e., |F'p|= kPS(XIQO):;/Z/“é

% = TFF'p/|F'p|

22k

>'<4 = (x 1°0 T

. 3/2, %

X5 = kT(oox]) /p

*6 =1 (4-6)
b, = =), 1=1,2,3

;')4 =0 ; py = constant

> =T\

s = % IF"pl

"Pg = ~H,

Since the only performance criterion being considered is that of minimum fuel or minimum

time, in both Case 1 and Case 2 Py and the terminal value of Ps will be specified as

= -1 and ps(tf) =0 for minimum time solution

Py

= constant and p5(ff) =+ 1 for minimum fuel solution

Py

For any set of boundary conditions of the form (2-2) together with the corresponding costate
variables at the boundary expressed by (2-6) a nominal trajectory can be obtained by solving the re-

sulting two=point boundary-value problem using any one of a number of iterative techiques.

Obtaining the optimum control law for the actual system will require, of course, knowing
the equations governing the actual dynamic system. However, only the dynamics of the nominal
system are known exactly and therefore we must make the assumption that the optimum control law
for the actual system has the same functional relationship as for the nominal system; i.e., (4-3) is

also the optimum control law for the actual system with the state and costate variables evaluated

* Explicit expressions for Hx and HT are given in section 4.3.
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along the actual trajectory. The state variables along the actual path can be ohtained from
sensing devices while the costate can be approximated in accordance with (2-21). The
correction matrix M(t) is obtained by solving the matrix Riccati equation (2-17) .

In general this computation can either be done in real-time or else computed beforehand and
stored with the nominal trajectory. Judging from the computation that would be required for cal-
culating the matrices of second partials it appears that a pre-computed and stored correction

matrix is the better choice. This will become more evident in the section 4.3.

4.3 Calculation of Coefficient Matrices H , H , H , H :
xp px XX pp

The matrices of second partials required in the solution of the matrix Ricca!i equation

(2-20) is obtained by direct differentiation of the Hamiltonian (4~4) for the two cases of "engine-on”
and "engine-off".

. : , 3/2, %
Case | Engine-off i.e., |F'p|< kps(x]ao) /1

The first partials Hp and Hx are given below

[ 0 3/2p,x 1003/;1%)
0 0
0 0
" (x l°o)3/ 2t e 0 7
0 0
L [ ! 0 ]

The second partials are obtained by differentiation of (4-7) with respect to x and p. It

is evident that all the elements of the pr matrix are zero except for (pr)4] which is given by

_ 3 3,\% -
Hopa1™ 7 &g/ (4-8)
The (Hxx) matrix also has only one non-zero element
03
-3 (0 % ,
(Hxx)ﬂ 4 p](x u) (4-9)
1
All the elements of the pr matrix are zero.,
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Case 2 Engine-on i.e., lF'p\ > kps(xloo):s/z/u%

The F matrix defined in equation (4-1) contains Xy Xos Xq and Xg explicitly and
therefore for the "engine-on" case it is convenient to first define the following set of 3 x 2 partial

derivative matrices:

Q@) g)’; =1,2, 3,6
) ) ) (4-10)
Q(w) Q(jt) 3F__ 9Q = : 2,3, 6
, = ’ ’ 6
axbax axJ 2, 3

Expressions for these matrices are obtained by direct differentiation of the F matrix.

In terms of the Q(t) and Q(w) matrices, we define another set A(t) and A(L'j) which

are given by

AY - @M ey + @Y pry 1=1,2,36
1=1,2,3,6
J=1,2,3,6

where A(t) and A(LJ) are 3 x 3 matrices. The elementsof H , H , H and H
P X xp pp

can be expressed in terms of these newly-defined matrices.

The six component Hp and Hx vectors are given by

- 1T
Hy 3
| |
H = (o) b 2 (4-12)
2 |
KTex )/ 2 |
______ AL I
i 2
- ] A
o TFF
h H = n
where  H = -
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_ - _ S
3 3
Hx 0 3
0
H = j------- 4 pemmmmmmmm e —}E (4-13)
x 0 0
- T|F'pl /g ?
----------------------------- —*
H 0 1
L T L J
where
’ _ T R
H), = 215 P A" p

©)

T " aTEer P A
The second partials are obtained by differentiation of (4-12) and (4-13). This results in the

following set of matrices

< 3 ——x T
. Y ~
: H |{i|H
Xp H 0 _|_P ' TP 3
E s ||
1 0 :
O e pommmmmmmmm e =--m-mms (4-14)
()41 0 o 0 0 i 0 ,
1 1
1 1
(o)1 0 o i 0 o i o
_______________________ ;________________i_________
|
0 0 o ! 0 o ' o '
where
3 3
b ar & og/h wt
3 3
st = 7 KTbeg/w)*
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The 'Li column of the 3 x 3 IA-|xp matrix is given by

_ T 0 a0 Y
(pr) o = el A p-pr AY o/2|F p|

The 3 - component H'r 0 vector is given by

I BN ) RN ) ;12
Hoo = Tpr A P HP A™ p/2|F p

< 3 Lrs - 2
5 I
: 0
|
H i -H
XX 1 X
i 0 "
i 5
i 0
H = |eememm—m e L __________________________
X 0 0 0 0 0
]
1
7 1
H x/g(5:] E 0 (hxx)ss
————————————————————— P o o - -
: Lo y
[H Tx_-J i B T/XS
- 1
where
H =R+S+T
XX
R = -HXHX/TIF pl
& =1 AW , t=1,2,3
(S)tj =T 'A p/2|F'p| j=1,2,3
3
1= 20 o kpT) 6,0
- 74 Py = *P51 001

zero except for

(1, D™ term

|
A
v

po o
-
X

_______

3
j'( (4-15)
2
|
X
1
!v
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th . . = ’ (7"6) ’ ' ’
The i{— component of the HTx vector is given by (HTx)i« = Tp' AV p/2|F p| + HT(Hx)t/T\F pl

1/=1, 2, 3
_ 2T[F’p|
(hxx)55_ »
5
2
A T SN
rr TFEel 2Fe[P7 P
. 0 0 oT
A '
‘0 0 0
PP !
' 0 0 0
H = |=—emmemmmmmmmee Ao e (4-16)
PP 0 0 00
0 0 0.0 0 0
0 0 0 +0 0
: T . (FER)(FF7p)’

= FF’
[Fpl RYA

4.4 Initial Evaluation of the Correction Matrix M(fo)

To be able to integrate the Ricatti equation (2-17) one must start with a value of the M
matrix, at some determined time. From (2-9) we see that along the optimum nominal path the M

matrix must satisfy the exact relationship
p = Mx

It is clear that the above relationship only gives 6 equations (for a 6-component state vector)
and yet M(to) must be defined by 21 independent matrix elements (making use of the fact that M
is a symmetric matrix). However, one can obtain a terminal value M(T) by imbedding the bound-
ary conditions into conditions on M(T) and then integrating the Riccati equation backward to the
initial time. The procedure for obtaining the matrix M(T) is described in detail in reference [1].

Basically the technique is to express M(t) in the form

M) = SG) - RE) Q1 (5) R (1) (4-17)
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where S, Q and R satisfy the following equation

-S = SHXP + HPXS + SHPPS + HXX
-R = (HPx +SHPP)R (4-18)
-Q =R HPPR

The following terminal conditions apply

SM) =0
. B
- [o 4 -m ]
\
k——k—
) ! 4-19)
i | LT
oy we [T
o110 [ S—— e 1‘ ,}e
|
mer | - MEM | L
ks —fe—— 1 ]
where atpt L=1,2, .
tbi,jzaxj J=1,2,... ,n
<pL(X(T)):O 1’:],2,-..,5

are the boundary conditions

When s is less than or equal to one Q(T) is a non-singular matrix in which case M(T)
can be evaluated directly by means of (4-17) and (4-19) without resorting to the differential

equations (4-18).
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Clearly when s is greater than one Q(T) becomes a singular matrix. Consequently, M(T)
cannot be evaluated at t = T. This problem is circumvented by integrating the differential equations

for S, R and Q for a small time A backwards from T and using the results to compute M(T - A).

For the specific case of a 6-component state vector with a single boundary condition (say on
the terminal energy, or equivalently, on the semimajor axis of the trajectory) the M(T) matrix can

be expressed as

i} . )

]

2ap b 1Ay a3y 9 959 %1

____________ A S

(]

o, o 0 0 0 ¢
]
]

| oy ;o 0 0 0 0

MM = — | o L) 0 0 0 0 (4-20)

X 4] i
]

o, 0 0 0 0 0
1
]
%1 ;

L 1 3
where
a;; = pﬂ(f)xj(T)
b= %' Mp)

4.5 Discussion of Results

The quasi-optimum feedback quidance scheme was investigated for the case of a low thrust
vehicle whose thrust vector is permantly misaligned by 10 degrees from its specified direction. A
digital computer program was used to simulate the performance of the optimum guidance system, the

open-loop guidance system and closed-loop or feedback system. The following initial conditions were

used:
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0.05 ft/sec2
50,000 ft/sec
1. 46 earth radii
.053

initial thrust acceleration

exhaust velocity

initial semimajor axis

initial eccentricity

The duration of the simulated flight was 44.5 hrs. (approximately 9 #  orbits) at which time the

semimajor axis reached 4.7 earth radii.

The first case that was considered was one in which only a single terminal condition was
specified, namely the energy of the vehicle or equivalently the semimajor axis of the orbit. The
optimum thrust vector was computed along the trajectory and then biased by 10 degrees to simulate
the open-loop guidance system. In the closed-loop system the control was computed in accordance
with (2-21) and (4-3) and then biased by 10 degrees to simulate the misalignment. The optimum dir-
ection of the thrust vector and those resulting from the open and closed-loop systems under a 10 de-
gree misalignment is shown in Figure 4.1 . The open-loop thrust vector is, of course, exactly 10
degrees less than the optimum and the closed-loop thrust vector differs by less than 3 1/2 degrees
from that of the open-loop system. A comparison of the performance of the three systems at the end
of 44.5 hrs. 's shown below in Table 4.1 . The variation of the semimajor axis during the entire flight

is shown in Figure 4.2 .,

Table 4.1

Summary of Performance After 44.5 Hours

case semimajor axis

(Earth Radii)
Optimum Thrust; No misalignment 4,.5413
Feedback guidance; 10° misalignment 4. 4387
Open-loop guidance; 10° misalignment 4.4373

These results indicate that for cases in which only the terminal energy of the vehicle (or

~ equivalently semi major axis of the orbit) is specified the feedback guidance law provides a negligible

improvement over the open-loop guidance system. However, this lack of improvement does not nec-

essarily reflect a weakness in the feedback guidance law since the open-loop system is already fairly
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close to optimum in achieving the desired terminal energy. In fact, a control consisting of pure
circumferential thrust would probably be adequate if the energy of the vehicle was the only terminal
condition to be satisfied. A more realistic situation, however, would require not only specifying a

terminal energy, but also the orbital angle at which this energy is attained.

Specifying two ferminal conditions (the semimajor axis and the orbital angle) requires the
computation of a new initial feedback matrix M(’ro) which in turn entails evaluation of M(T) and a
backward integration to to - However since M(T) does not exist when more than one terminal con-
dition is specified the value of M must be computed at time T -A using (4-17) - (4-19). For the
two terminal conditions under consideration x](l') = C] and xé(T) = C2 the R() and Q(T)

matrices specified in (4-19) are given by

— -

L 0 'IE’](T) i 1
Ry = |0 O -b3(f; : Qm=| o 0 5, )

0 ° —.p4(T . . 6 . .

0 0 _bs(r) _ x](T) xé(T) _tél xt(T)P-L(T)_

0 1 M

In one computer run the S, Q and R equations were integrated from T to T- 0.5, af
which point M was evalutated and the remainder of the frajectory computed using the costate equa-
tion p = Mx . It turns out that the computation of M this close to the terminal time produces
elements of the. matrix which are very large (of the order of ]O]O). The values of x and p are of

the order of magnitude of unity which implies that even 7 place accuracy in this computation of M

can result in errors of as much as 3 orders of magnitude in the costate vector p.

In another run the equations were integrated backwards to T - 45.0 and the M matrix com-

puted of this point. The elements of the matrix were of the order of 105 indicating that 7 place accurac

in this computation of M might suffice. However with the algorithm presently being used to compute

M(to) the normal digital computer round-off and truncation errors would be intolerable. Therefore

a reprogramming of the algorithm to minimize the computational errors is required before any conclusive

results can be obtained.
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APPENDIX |

IGM Guidance Law

The equations used fo simulate the IGM guidance law were obtained from References 6,7,

and 8. They are divided into 3 sections which are:
(1) Burnout State Predictor
(2) Time-to-go Computation
(3) Steering Angle Computation

] The equations used are illustrated in Figure |- 1 . The data required to initialize the algorithm

is listed below:

F = thrust in pounds

T . = time-to-
GO ime-to-go
m = mass flow rafe
YDES = burnout altitude
XDES = x - velocity at burnout
YDES = y = velocity at burnout
IpEs gravitation acceleration at burnout altitude
At = time between guidance law computations
WFTR = weighting factor for improving burnout angle prediction when long and/or

steep trajectories are encountered.
In addition the following inertial measurements are required.

vehicle mass

N
2) x and y position
3)

4
5

x and y velocity
) © = tan | (y/x)
) R ‘—'-\/xz + y2
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Figure 1 -1 IGM Guidance Equations

INITIAL DATA
FrTeor ™ Ypess Xpess Ypess 9pese A WFTR
[INERTIAL DATA _
ml xl yl ;(I .yl RI ¢
BURNOUT STATE PREDICTOR
Vex = F/m
T = m/m
TGO = TGO - At
T - T
N <_9__<_33>
1 ex e 1'0
Ay = AT Ve TGO
Ay =AMt A TG0
_ 2
Ay = T3 Ve’ 2 Toc?
(-]

O, = (A +T . Vx2+32 LWFTR)/Y
TGO 3 GO A DES
o, =D+

BO TGO
Xpo ~ X cos (DBO -y sin ¢BO
yBO = x sin (DBO +y cos ¢BO
;(BO = X €Os o " y sin CDBO
y = xsin®, _ +ycosd
BO ) 2 BO BO
g = /R
L
9* = (9 *9peg)/2
b =

- 9
TGo/

&A)



?

TIME-TO-GO COMPUTATION

2 _ . L, 2
Vgx Xpes = %30 "9 TG0 @ ™)
V2=(? -y +g*T cosCID*)2
9 DEs " 7BO "9 'GO
Y 2 2
vg +vg .
v ol 0 €1 97 'co
ex e TO-TGO
AT = G(1y =T )/V,
Tco = Teo AT
STEERING ANGLE COMPUTATION
T -7
A ==V | < 0 GO)
] ex ‘ro
Ay = AT Vel co
Ay = - At AT
_ ) 2
Ay = TP Verlgo” 2
S - ran”1| _DES “7B0 9" TG00 @
- - * H
XDES xBO g TGOsm(D*
P = A3cosx
Q = A4cosx
_ - - * l 2 _ .~
R = YDES YBO yBOTGO + 5 g*TGO cos d* A3sz
AQ-AP
b = ¢:|A]/A2
X =X -a+bt
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APPENDIX I

Modified Secant Algorithm for N Equations with N Unknowns

In order to solve approximately the n equations
E](x] ¢ Xg s ee g X )=0

E2(x],x2,...,x)=0

En(x],xz,...,x)=0

n

Assume that for n+1 points the values of E;, areknown. Associated with each of the n+1 points

are n+1 sets of equations

(M, D, L D) (Y, D e )

For each set of equations form the sum

n

€V?, ...z .=z 0)?

T, = a1 = 4E

1

E

1

Denote the largest sum Emax and the smallest sum Emin . Set K equal to a number between zero

ond one. The following set of equations is solved for q, .

1 1 . v a, 1 7 7
A - A URES TR
(1) @) (n+1) (min)
E E ... E q (1-KE
2 2 2 3 | 2 .
(1) @) +1) i
En+l IEn+l T Er(1n+1 U+ (1-K) En(m "
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With these q, 's compute a new point as follows

Using the new point, X"
halve k and repeat (Il -1 and 2).
z
ma
of equations (11-1 and 2). The algorithm is terminated when zmin

and the solution is taken as x(mm) .

66

with Z
ne

[ (n+2)]

X

1
(n+2)
%2

(n+2)
X

n

-t

f'x(]1)
1)
2

X

(1)
xn

+2

@)

, calculate E;
If Z
ne

w P (H1-1), replace x

with x

(n+1) 1T )
] 9
(n+1)
X2 @
(n+1)
X n qn+]

n
_ (n+2)
and Enew iEl (E;

double k (up to @ maximum of 1), replace

” (042)

(1n-2)

>z

max

in (11-2) and repeat the computation

is less than a predetermined value



APPENDIX I}

Calculation of Gravity Polynomial Coefficients

for the PGE Guidance Law |

The algorithm used to calculate the coefficients for the gravity polynomials was supplied by

MSFC and is illustrated in Figure I11-1 .

Figure 1ll =1 Equations Used to Calculate the
Coefficients for the PGE Gravity Polynomials

CURRENT ESTIMATED ADJOINT
DERTALDAIA VARIABLES AND TIME-TO-GO _
xi,xt,m P-LIP-LITGO’
(t:11213) (z./:]I213)
c-% ¥ 1=1,2,3
131 )
3 P, P
A__3 it
i=1 .2C
B2 - 3 "
i 1=1 C
_ 2. 2
| Z=1+2AT  +BT
[ 3 2_ 1/2
=z
ol el
[ 3 2“ 1/2
v = .-LE] xt- !

(K-
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